Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 41: 9-12, sept. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1053556

ABSTRACT

Background: Horizontal gene transfer (HGT) is the most important mechanism in the evolution of new genetic capabilities in bacteria, including specific degradative pathways, virulence factors, and resistance to antibiotics. Among the processes involved in HGT, transduction is noteworthy. This is a mechanism for gene transmission mediated by a bacteriophage that functions both as a reservoir and as a vector of exogenous genes, which remain protected from environmental effects in the bacteriophage's capsid. Within this context, this investigation aimed to evaluate the ability of the generalized transducing bacteriophage P1 to productively infect and transduce in the bacterial species Salmonella bongori. Results: We could establish that a derivative of bacteriophage P1, P1Cm, infects strains of S. bongori with frequencies of lysogenization in the order of ~10−2 lysogens/UFP. Through thermal induction, infective viral progeny was obtained, and we could show that P1Cm readily formed plaques on S. bongori lawns, a phenomenon thus far not reported for other members of the genus Salmonella. Finally, we showed P1Cm-mediated transduction of the model plasmid RP4 at frequencies of ~10−7 transductants/donor. Conclusion: Therefore, bacteriophage P1 can be used as a tool for the genetic manipulation in the species S. bongori.


Subject(s)
Salmonella , Transduction, Genetic , Bacteriophage P1/genetics , Bacteriophage P1/pathogenicity , Capsid , Gene Transfer, Horizontal , Escherichia coli , Lysogeny
2.
Electron. j. biotechnol ; 10(4): 627-632, oct. 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-504113

ABSTRACT

Phage therapy has been used in the past as an alternative therapy against bacterial pathogens. However, phage-resistant bacterial strains can emerge. Some studies show that these phage-resistant strains are avirulent. In this study, we report that phage-resistant strains of Salmonella enterica serovar Enteritidis (hereafter S. Enteritidis) were avirulent in the Caenorhabditis elegans animal model. We isolated phage-resistant strains of S. Enteritidis ATCC 13076 by using three lytic phages (f2aSE, f3aSE and f18aSE). In these mutants, we explored different virulence factors like lipopolysaccharide (LPS), virulence plasmid (Pla), motility and type I fimbriae, all of which may have effects on virulence and could furthermore be related to phage resistance. The phage-resistant strains of S. Enteritidis showed loss of O-Polysaccharide (O-PS) and auto-agglutination, present a rough phenotype and consequently they are avirulent in the C. elegans animal model. We speculate that the O-PS is necessary for phage attachment to the S. Enteritidis cell surface.


Subject(s)
Bacteriophages , Lipopolysaccharides/metabolism , Salmonella enteritidis/pathogenicity , Salmonella enteritidis/virology , Caenorhabditis elegans/microbiology , Drug Resistance, Microbial , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL